DPP - 1 (Waves)

Video Solution on Website:-

Video Solution on YouTube:-

Written Solution on Website:-

https://physicsaholics.com/home/courseDetails/91

https://youtu.be/W3HbB9RShLE

Q 1. A wave is represented by the equation $y=7 \sin \{\pi(2 t-2 x)\}$ here x is in metres and t in seconds. The velocity of the wave is
(a) $1 \mathrm{~m} / \mathrm{s}$
(b) $2 \mathrm{~m} / \mathrm{s}$
(c) $5 \mathrm{~m} / \mathrm{s}$
(d) $10 \mathrm{~m} / \mathrm{s}$

Q 2. The equation of a wave motion (with t in seconds and x in meters) is given by $y=$ $7 \sin \left\{7 \pi t-0.4 \pi x+\frac{\pi}{3}\right\}$. The velocity of the wave will be
(a) $17.5 \mathrm{~m} / \mathrm{s}$
(b) $49 \pi \mathrm{~m} / \mathrm{s}$
(c) $\frac{49}{2 \pi} \mathrm{~m} / \mathrm{s}$
(d) $\frac{2 \pi}{49} \mathrm{~m} / \mathrm{s}$

Q 3. The equation of a wave is $y=4 \sin \left[\frac{\pi}{2}\left(2 t+\frac{1}{8} x\right)\right]$, where y and x are in centimeters and t is in seconds. Which of the following is incorrect statement?
(a) The amplitude, wavelength, velocity, and frequency of wave are $4 \mathrm{~cm}, 16 \mathrm{~cm}, 32 \mathrm{~cm} / \mathrm{s}$ and 1 Hz , respectively, with wave propagating along-x direction.
(b) The amplitude, wavelength, velocity, and frequency of wave are $4 \mathrm{~cm}, 32 \mathrm{~cm}, 16 \mathrm{~cm} / \mathrm{s}$ and 0.5 Hz , respectively, with wave propagating along-x direction.
(c) two positions occupied by the partigle at time interval of 0.4 s have a phase difference of 0.4π radian.
(d) two positions occupied by the particle at separation of 12 cms have a phase difference of 135°

Q 4. The equation of a wave is $y=2 \sin [\pi(0.5 x-200 t)]$, where x and y are expressed in cm and tin sec. The wave velocity is
(a) $100 \mathrm{~cm} / \mathrm{sec}$
(b) $200 \mathrm{~cm} / \mathrm{sec}$
(c) $300 \mathrm{~cm} / \mathrm{sec}$
(d) $400 \mathrm{~cm} / \mathrm{sec}$

Q 5. The wave described by $y=0.25 \sin [(10 \pi x-2 \pi t)]$, where x and y are in meters and t in seconds, is a wave travelling along the
(a) $+v e x$ direction with frequency 1 Hz and wavelength $\lambda=0.2 \mathrm{~m}$
(b) $-v e x$ direction with amplitude 0.25 m and wavelength $\lambda=0.2 \mathrm{~m}$
(c) $-v e x$ direction with frequency 1 Hz
(d) $+v e x$ direction with frequency $\pi \mathrm{Hz}$ and wavelength $\lambda=0.2 \mathrm{~m}$

Q 6. Calculate the wavelength of the wave as shown above:

(a) 1 m
(b) 2 m
(c) 3 m
(d) 6 m

Q 7. The equation of a progressive wave is $y=8 \sin \left[\pi+\left(\frac{t}{10}-\frac{x}{4}\right) \frac{\pi}{3}\right]$. The wavelength of the wave is (where x and y are in meter)
(a) 24 m
(b) 4 m
(c) 2 m
(d) 10 m

Q 8. A plane wave is represented by $x=1.2 \sin (314 t+12.56 y)$ Where x and y are distances measured along in x and y direction in meters and t is time in seconds. This wave has
(a) A wavelength of 0.25 m and travels in $+v e \mathrm{x}$ direction
(b) A wavelength of 0.25 m and travels in $+v e y$ direction
(c) A wavelength of 0.5 m and travels in -ve y direction
(d) A wavelength of 0.5 m and travels in $-v e \mathrm{x}$ direction

Q 9. A travelling wave passes a point of observation. At this point, the time interval between successive crests is 0.2 seconds
(a) The wavelength is 5 m
(b) The frequency is 5 Hz
(c) The velocity of propagation is $5 \mathrm{~m} / \mathrm{s}$
(d) The wavelength is 0.2 m

Q 10. At a moment in a progressive wave, the phase of a particle executing S.H.M. is $\frac{\pi}{3}$.
Then the phase of the particle 15 cm ahead and at the time $\frac{T}{2}$ will be, if the wavelength is 60 cm
(a) $\frac{\pi}{2}$
(b) $\frac{2 \pi}{3}$
(c) zero
(d) $\frac{5 \pi}{6}$

Q 11. Which one of the following does not represent a travelling wave?
(a) $y=\sin (x-v t)$
(b) $y=y_{m} \sin k(x+v t)$
(c) $y=y_{m} \log (x-v t)$
(d) $y=f\left(x^{2}-v t^{2}\right)$

Q 12. If the equation for the transverse wave in a string is given by $y=5 \sin \left[2 \pi\left(\frac{t}{0.02}-\right.\right.$ $\left.\frac{x}{50}\right)$] with lengths expressed in cm and time period in seconds, calculate the wave velocity and maximum particle velocity
(a) $25 \mathrm{~m} / \mathrm{s}, 5 \pi \mathrm{~m} / \mathrm{s}$
(b) $5 \pi \mathrm{~m} / \mathrm{s}, 25 \mathrm{~m} / \mathrm{s}$
(c) $25 \mathrm{~m} / \mathrm{s}, \frac{5}{\pi} \mathrm{~m} / \mathrm{s}$
(d) $\frac{5}{\pi} \mathrm{~cm} / \mathrm{s}, 25 \mathrm{~m} / \mathrm{s}$

Q 13. The equation of a simple harmonic wave is given by $y=3 \sin \left[\frac{\pi}{2}(50 t-x)\right]$ where x and y are in meters and x is in second. The ratio of maximum particle velocity to the wave velocity is
(a) 2π
(b) $\frac{3}{2} \pi$
(c) 3π
(d) $\frac{2}{3} \pi$

Q 14. A transverse wave is given by $y=A \sin \left[2 \pi\left(\frac{t}{T}-\frac{x}{\lambda}\right)\right]$. The maximum particle velocity is equal to 4 times the wave velocity when
(a) $\lambda=2 \pi A$
(b) $\lambda=\frac{1}{2} \pi A$
(c) $\lambda=\pi A$
(d) $\lambda=\frac{1}{4} \pi A$

Answer Key

Q. 1 a	Q. 2 a	Q. 3 a	Q. 4 d	Q. 5 a
Q. 6 b	Q. 7 a	Q. 8 c	Q. 9 b	Q. 10 d
Q. 11 d	Q. 12 a	Q. 13 b	Q. 14 b	

